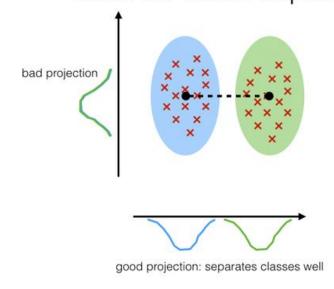
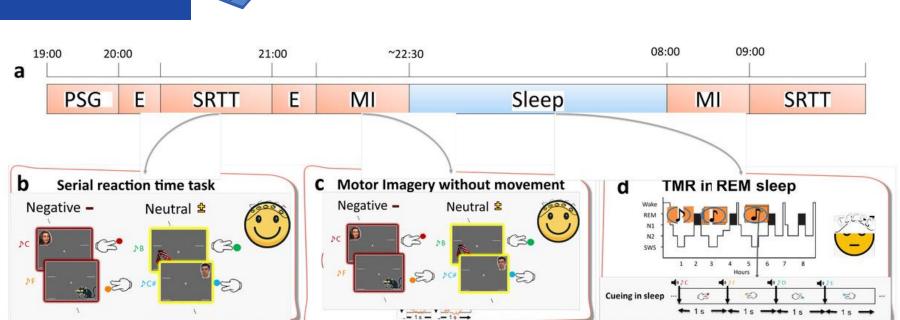

DETECTING TMR CUED REPLAY OF NEGATIVE MEMEORIES IN REM WITH EEG CLASSIFIERS: A PLANNED STUDY

A.A.S. Majumder, Mo Abdellahi, P.A. Lewis
Neuroscience and Psychology of Sleep Laboratory, Cardiff University

BACKGROUND


- Targeted Memory Reactivation (TMR) during sleep can cue specific memories and enhance consolidation (*Rasch & Born, 2013*).
- In Slow-Wave Sleep (SWS), TMR has been shown to strengthen memory traces, particularly when cues align with sleep spindles (Cairney et al., 2018). EEG-based classifiers have successfully decoded such TMR-related reactivation events (Belal et al., 2018; Tsimpanouli et al., 2017).
- Abdellahi et al. (2023) demonstrated that TMR in REM sleep also produces decodable neural reactivation, and that reactivation strength predicts post-sleep behavioural improvements.
- Recent work at the NaPS Lab applied an EEG classification pipeline to emotionally valenced motor sequences during NREM sleep, showing that negative and neutral sequences could be distinguished using theta-band power and LDA (Abdellahi, Tsimpanouli & Lewis, poster presented at Replay@CUBRIC 2025).

HYPOTHESIS


- Building on previous work showing that emotional memory traces can be decoded during NREM sleep, we now ask:
 - Can a classification model, trained on data across participants, accurately identify reactivations of emotionally cued sequences during REM sleep?
- This approach extends existing pipelines from NREM to REM, aiming to test whether emotionspecific reactivation can be detected in the more desynchronised neural dynamics of REM.

LDA:

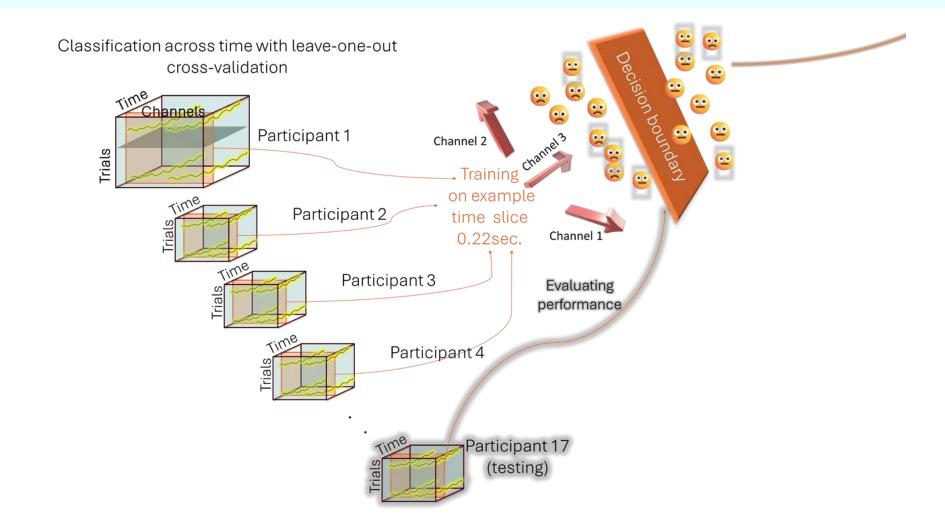
maximizing the component axes for class-separation

PROTOCOL

BLOCK CONTAINS 3 REPETITIONS OF THE SEQUENCE.
15-SECOND GAP BETWEEN BLOCKS.
24 BLOCKS OF EACH SEQUENCE IN TOTAL AND 4 RANDOM BLOCKS.

METHODOLOGY

Participants and Design


- Data will be collected from participants performing a Serial Reaction Time Task (SRTT) paired with auditory cues and emotionally-valenced images (negative or neutral).
- Participants will then sleep overnight, with TMR cues presented during REM sleep in interleaved blocks.

EEG Feature Extraction

- EEG data will be recorded from 32 channels and preprocessed using standard filtering and artefact rejection.
- A Hilbert transform will be applied to extract instantaneous theta-band power (4–8 Hz) from each channel following cue onset.

Classification Pipeline

- A Linear Discriminant Analysis (LDA) classifier will be trained on pre-sleep wake imagery EEG, distinguishing negative vs neutral cue sequences.
- Classification will be performed across time, and accuracy will be assessed using leave-one-out cross-validation.
- Performance will be compared to chance-level baselines using permutation tests.

EXPECTED RESULTS

- We expect that the classifier will achieve above-chance accuracy in distinguishing emotionally valenced TMR cues (negative vs neutral) during REM sleep, indicating successful detection of memory reactivation.
- However, classification performance may be lower than that observed in SWS, due to the more desynchronised and dynamic EEG activity characteristic of REM.
- Identifying reactivation in REM would not only extend the validated NREM classification pipeline to a new sleep stage, but also provide insights into how emotional memories are processed and re-expressed in REM sleep; a stage traditionally associated with affective regulation and dream-related reorganisation.
- This study may help clarify the functional role of REM sleep in emotional memory consolidation and reactivation dynamics.

REFERENCES

- Abdellahi, M. E. A., Koopman, A. C. M., Treder, M. S., & Lewis, P. A. (2023). Targeted memory reactivation in human REM sleep elicits detectable reactivation. eLife, 12, e84324. https://doi.org/10.7554/eLife.84324
- Belal, S., Cousins, J. N., El-Deredy, W., Parkes, L. M., Schneider, J., Tsimpanouli, M.-E., & Lewis, P. A. (2018). Identification of memory reactivation during sleep by EEG classification. NeuroImage, 176, 203–214. https://doi.org/10.1016/j.neuroimage.2018.04.005
- Cairney, S. A., Guttesen, A. Á. V., El Marj, N., & Staresina, B. P. (2018). Memory consolidation is linked to spindle-mediated information processing during sleep. The
- Journal of Neuroscience, 38(50), 10774–10782. https://doi.org/10.1523/JNEUROSCI.3022-17.2018
 Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological Reviews, 93(2), 681–766.
- Tsimpanouli, M.-E., Belal, S., & Lewis, P. A. (2017). Identification of negative memory reactivation during sleep by EEG classification. Unpublished MSc Thesis, Cardiff University.
- Abdellahi, M. E. A., Tsimpanouli, M.-E., & Lewis, P. A. (2025). Your Emotions, My Brain: Generalisable Neural Signatures of Emotional Context During Sleep. Poster presented at Replay@CUBRIC 2025, Cardiff University.

CONTACT

Email: saqiba1@cardiff.ac.uk

Visit us at: www.sleepengineering.co.uk/